Use of the Natural Tooth as a Provisional after Immediate Implant Placement

Robert Margeas, DDS

ABSTRACT

Provisionalization for immediate-placed implants using the patient’s existing tooth can enhance the final esthetic outcome if certain steps are followed. If the natural tooth is intact and can be used as a provisional, the emergence profile can be very similar to the preoperative condition. This will allow the gingival tissue and papilla to be supported and help prevent collapse of the tissue. The patient’s preoperative condition plays a key role in understanding and predicting the final esthetic outcome. This article outlines a technique to use the patient’s natural tooth after extraction to provisionalize an implant.

The loss of a tooth in the anterior esthetic region as a result of periodontal disease, trauma, endodontic failure, or root resorption can be a traumatic experience for a patient. Traditional implant therapy often required 2 to 3 months of alveolar ridge remodeling after tooth extraction and an additional 6 months of non-loaded healing for implant osseointegration to be successful. Esthetic single-tooth implant placement using a traditional two-stage surgery has been well-documented in the literature. Many complications can occur during the healing phase, such as loss of papilla as a result of flap elevation or blunting of the papilla caused by provisionalization with a removable appliance that is not stable. Bone and gingival tissue loss after maxillary anterior tooth extraction and implant surgery may present additional esthetic challenges. Clinical and histologic studies have demonstrated that non-submerged implants osseointegrate as well as submerged implants and function comparably under load over extended periods.

Immediate implant placement using a single-stage surgical approach can reduce the duration of treatment, preserve papilla, and limit apical migration of the free gingival margin. Several studies have shown successful bone regeneration in extraction sites around immediately placed implants with clinical results similar to two-stage procedures. Extraction, implant placement, and provisionalization combine surgical and restorative principles for tooth replacement. The advantages to this approach include patient comfort, increased esthetics, and better patient acceptance. When using a fixed provisional, the patient’s phonetics is much better than using a removable appliance. Immobile immediate provisionalization can enhance soft tissue management as well.

When using a flapless, one-stage approach, soft tissue healing and maturation can occur simultaneously with implant integration. In addition, implant placement into a fresh extraction site provides an adequate blood supply to the wound and allows sufficient bone maintenance since resorption and remodeling will not yet have occurred. Raising a surgical flap compromises the bone vascularization and may result in marginal bone loss and soft tissue recession with collapse of the interdental papilla, particularly in the presence of thin, scalloped gingiva.

As with traditional implant treatment, approximately 1 mm of gingival recession may occur at the free gingival margin after placement of the definitive restoration. This may be attributed to the biologic width formation after repeated removal and replacement of the implant components during impression making, try-in, and fitting of the restoration.

If a failing tooth has a free gingival margin positioned more incisally compared to the adjacent tooth, it will allow the final free gingival margin to be similar following apical migration of 1 mm after implant placement. A hopeless tooth with the free gingival margin positioned ideally or more apical would benefit from orthodontic extrusion before extraction.

The form of the periodontium plays an important part in the final esthetics of the implant restoration. The three categories of gingival scallop are high, normal, and flat. Based on a clinical survey of 100 patients, the average or normal gingival scallop is positioned 4 mm to 5 mm more incisally than the free gingival margin. The high or long gingival scallop will have a much higher risk for gingival loss or flattened papilla after extraction vs the normal or flat scallop. The flat scallop has less volume of papilla in the interproximal area; therefore, it is much more predictable and maintainable after extraction. One of the principal advantages of the immediate technique is the prevention of post-extraction bone resorption. Bone loss may affect approximately 23% of the anterior alveolar crests during the 6 months after extraction.

Infection affecting the tooth being extracted may be a contraindication to the immediate technique, as it is most often accompanied by apical or lateral bone loss that can impair primary stability. Primary stability after implant placement is important when provisionalizing immediately. Drilling 3 mm to 5 mm beyond the apical limit (in a palatal direction) can ensure sufficient stability.

The success rates being achieved using this single-stage approach contradicts the basic tenets of the original Bränemark technique, which was to allow the implants to be covered and to protect the implant against early loading. It appears that it is not early loading that creates the effect of fibrous encapsulation, but rather a certain degree of micro-movements at the bone/implant interface resulting from inadequate primary stability. Various experimental studies indicate that the range of tolerance of these micro-movements is approximately 50 µm to 150 µm for rough surfaces and about 100 µm for smooth, machined surfaces. Thus, the implant surface is not an indifferent factor in the process of bone healing. Rough surfaces appear to tolerate greater micro-movements and, therefore, could be placed under load at an earlier time.
Research on the preservation of the tissue architecture, reduction of surgical sequences, augmentation of patient comfort during provisionalization, and greater esthetic requirements have led many practitioners to consider immediate replacement of the missing or freshly extracted tooth.

Care must be taken when an immediate single-tooth implant restoration is planned in the anterior region. Successful esthetic results may ultimately be determined by the patient’s presenting anatomy rather than the clinician’s ability to manage state-of-the-art procedures.27

CASE PRESENTATION

An 18-year old female patient presented with root resorption of the maxillary right central incisor (Figure 1). Available restorative options were presented to the patient, and included a removable partial denture, a fixed bridge, or an implant-supported restoration. The adjacent teeth had not been previously restored, so the patient chose to have an implant-supported restoration to avoid preparation of the adjacent teeth. The patient also did not want to wear a removable appliance during the implant healing phase. There was no active infection present and no apical pathology was seen radiographically. Periodontal evaluation revealed a thick, normal-scalloped periodontal biotype. Approximately 85% of the population present with thick, flat periodontal forms, whereas the periodontal architecture of the remaining population is thin and scalloped.38 Though the amount of postoperative soft tissue modifications is generally minimal for patients with thick and flat gingiva, significant changes have been observed in those with thin and scalloped biotypes.36

The projected interproximal tissue height depends on the interproximal bone height of the adjacent teeth. Bone sounding of the teeth adjacent to the failing tooth can ascertain predictable interproximal tissue height. In this patient, a normal osseous crest was revealed after bone sounding. Gingival tissue was approximately 3 mm from the osseous crest facially and 5 mm interproximally. The risks and benefits of treatment were presented to the patient, and an implant was selected for immediate placement and fixed provisionalization using the patient’s natural tooth on the abutment. Using the natural tooth as a provisional will allow tissue support and create a emergence profile similar to the pre-extraction condition. This will support the peri-implant mucosa and maintain the papilla height, gingival outline and tissue form throughout the osseointegration phase. Wohle has described several reports with simultaneous provisionalization on an implant placed into an extraction socket.39 Maintenance of gingival tissues and papillae can be a demanding task when using a full periosteal flap reflection. Several reports have proposed implant placement without flap elevation to minimize bone loss.40,41 Although initial results appear promising, the lack of direct visibility in flapless surgery may present limitations that require careful evaluation of the osseous topography as well as meticulous surgical execution.42

Surgical Procedure

Before extraction of the tooth, stone models were made and a putty index was formed over the teeth. This would act as a guide to placing the tooth in the proper orientation after surgery. Local anesthetic was administered and periotomes were used to loosen the periodontal ligament. The tooth was extracted atraumatically, without flap reflection. A periodontal probe was used to verify the integrity of the facial plate, and the socket was thoroughly debrided.

Primary stability was achieved by engaging the palatal wall and bone approximately 4 mm beyond the apex to the extraction socket with a 13-mm Straumann (Andover, MA) standard diameter 4.1-mm implant with a 4.8-mm collar. Nobel Biocare’s (Yorba Linda, CA) Replace Select® implants would also have been an acceptable choice. The top of the implant was placed approximately 3 mm from the final proposed free gingival margin in the mid-facial area. Ideally, the 1-mm polished collar should be above the bone level. With a flapless surgical approach, this is sometimes difficult to visualize. The implant diameter was within the confines of the tooth socket, without engaging the facial plate, to prevent possible perforation. A minimal distance of approximately 1.5 mm to 2 mm between the implant and adjacent teeth is recommended to minimize marginal bone loss resulting from encroachment.43 Although not necessary with a horizontal distance less than 2 mm from the implant to the facial bone, synthetic bone was placed around the implant and a healing cap (Figure 2) was lightly tightened. Immediate provisionalization was then begun; the healing cap was removed and a Straumann 5.5-mm solid abutment was placed on the implant and hand tightened (Figure 3). No preparation was necessary as this is a stock component and the occlusion did not interfere.

Restorative Procedure

The coronal portion of the patient’s tooth was to be used as the provisional restoration. The extraction was necessary because of the resorption of the root (Figure 4). The root of the tooth was sectioned horizontally with a diamond bur approximately 3 mm from the cementoenamel junction (Figure 5). The tooth was then hollowed out so that it would fit over the abutment (Figure 6). Before relieving the tooth, it was placed on the solid abutment to make sure it would fit and that there would be no occlusal contact on the final provisional (Figure 7). After confirming an accurate fit, the tooth was etched for 30 seconds (Figure 8), then rinsed and air-dried. A bonding agent D/E resin was applied and light-cured for 20 seconds (Figure 9). A bis-acryl material was injected into the tooth (Figure 10) and then placed intraorally onto the abutment and allowed to self-cure for 2 minutes.

It is difficult to achieve an accurate margin when relieving a provisional, (Figure 11) so it is necessary to reline the margins out.
of the mouth with a flowable resin (Figure 12). It is very important when relining the restoration extraorally that an analog is used that is exactly the same as intraorally. Do not use a laboratory implant abutment analog for this purpose. It is important to get an accurate fit of the restoration. The final provisional should be refined and contoured flat or slightly under-contoured using the possible complications from immedi-
tation existed before the extraction. One of the
sure, as it is the exact emergence profile
to create too much interproximal pres-
gence profile of the tooth. It is impossible
to be used to a screw-
serted provisional.
A technique first described by Higgin-
bottom44 allows the majority of the pro-
cessional cement to be removed extraorally using the same analog as that used for the fabrication of the temporary. A tem-
porary cement is placed in the crown and then placed on the abutment extrao-
ally (Figure 14). The excess cement is then removed before placing the tempo-
orarily intraorally. This allows minimal
clean-up intraorally and prevents pos-
gingival irritation. Do not be fooled into placing more cement into the res-
toration after cleaning. There is adequate
cement to hold the restoration on. Place
the restoration on the abutment and al-
low the cement to fully set. Clean off any
excess cement.

Figure 13 The polished provisional. Note undercontouring on the facial.

Figure 16 Two-week postoperative view.

Figure 17 War-up of the gold abutment.

Figure 18 Porcelain-fused-to-metal abutment torqued onto the implant.

Figure 19 Final close-up of the restoration.

Figure 20 The preoperative smile.

Figure 21 The postoperative smile.

The patient's presenting anatomy can ul-
timately dictate the final esthetic outcome.

DISCLOSURE
TO COME

REFERENCES
1. Andersson B, Odman P, Lindvall AM, Lithner B. Single-tooth restorations supported by osseointegrated implants: results and ex-
2. Avitz-Aber L, Zarb GA. Clinical effectiveness of implant-supported single-tooth replace-
3. Bränemark PI. Osseointegration and its ex-
4. Becker W, Becker BE. Flap designs for min-
7. Carlsson GE, Bergman B, Hedegard B. Changes in contour of the maxillary alveolar process under immediate dentures. A longi-
8. Leimola-Virtanen R, Pettila J, Oksala E, et al. ITI titanium plasma-sprayed screw im-
plants in the treatment of edentulous mandi-
10. Vassos DM. Single-stage surgery for im-
14. Rosenquist B, Grenthe B. Immediate place-
ment of implants into extraction sockets: Im-
15. Schwartz-Arad D, Grossman Y, Chaushu G. The clinical effectiveness of implants placed

1. Traditional implant therapy often required how much time for alveolar ridge remodeling after tooth extraction?
 a. 1 to 2 months
 b. 2 to 3 months
 c. 3 to 4 months
 d. 4 to 6 months

2. Immediate implant placement using a single-stage surgical approach can:
 a. reduce the duration of treatment.
 b. preserve papilla.
 c. limit apical migration of the free gingival margin.
 d. all of the above

3. The three categories of gingival scallop are:
 a. high, normal, and flat.
 b. low, round, and soft.
 c. high, round, and soft.
 d. low, normal, and curved.

4. Based on a clinical survey of 100 patients, the average or normal gingival scallop is positioned more incisally than the free gingival margin by how much?
 a. 3 mm to 4 mm
 b. 4 mm to 5 mm
 c. 5 mm to 6 mm
 d. 6 mm to 7 mm

5. Bone loss may affect approximately how many of the anterior alveolar crests during the 6 months after extraction?
 a. 12%
 b. 19%
 c. 23%
 d. 28%

6. Drilling how far beyond the apical limit (in a palatal direction) can ensure sufficient stability?
 a. 1 mm to 2 mm
 b. 2 mm to 4 mm
 c. 3 mm to 5 mm
 d. 4 mm to 6 mm

7. Various experimental studies indicate that the range of tolerance of micro-movements is approximately what for rough surfaces?
 a. 25 µm to 75 µm
 b. 50 µm to 150 µm
 c. 60 µm to 90 µm
 d. 75 µm to 100 µm

8. Research on which of the following areas have led many practitioners to consider immediate replacement of the missing or freshly extracted tooth?
 a. the preservation of the tissue architecture
 b. reduction of surgical sequences
 c. augmentation of patient comfort during provisionalization
 d. all of the above

9. Approximately how much of the population present with thick, flat periodontal forms?
 a. 35%
 b. 56%
 c. 64%
 d. 85%

10. A minimal distance of approximately what between the implant and adjacent teeth is recommended to minimize marginal bone loss resulting from encroachment?
 a. 1.5 mm to 2 mm
 b. 1.75 to 2.25 mm
 c. 2 mm to 2.5 mm
 d. 2.25 mm to 2.75 mm